Simulation of Wireless Communication Systems using MATLAB

Dr. B.-P. Paris
Dept. Electrical and Comp. Engineering
George Mason University

Fall 2007
Outline

MATLAB Simulation

Frequency Diversity: Wide-Band Signals
MATLAB Simulation

- **Objective:** Simulate a simple communication system and estimate bit error rate.

- **System Characteristics:**
 - BPSK modulation, $b \in \{1, -1\}$ with equal a priori probabilities,
 - Raised cosine pulses,
 - AWGN channel,
 - oversampled integrate-and-dump receiver front-end,
 - digital matched filter.

- **Measure:** Bit-error rate as a function of E_s/N_0 and oversampling rate.
System to be Simulated

Figure: Baseband Equivalent System to be Simulated.
From Continuous to Discrete Time

 ► The system in the preceding diagram cannot be simulated immediately.
 ▶ Main problem: Most of the signals are continuous-time signals and cannot be represented in MATLAB.

 ► Possible Remedies:
 1. Rely on Sampling Theorem and work with sampled versions of signals.
 2. Consider discrete-time equivalent system.

 ► The second alternative is preferred and will be pursued below.
Towards the Discrete-Time Equivalent System

- The shaded portion of the system has a discrete-time input and a discrete-time output.
 - Can be considered as a discrete-time system.
 - **Minor problem:** input and output operate at different rates.

$$\sum \delta(t - nT) \times p(t) \times h(t) + N(t) \times \Pi_{T_s}(t)$$

Sampler, rate f_s

$R[n]$ to DSP
The **discrete-time equivalent system**
- is equivalent to the original system, and
- contains only discrete-time signals and components.

- Input signal is up-sampled by factor $f_s T$ to make input and output rates equal.
 - Insert $f_s T - 1$ zeros between input samples.
Components of Discrete-Time Equivalent System

Question: What is the relationship between the components of the original and discrete-time equivalent system?

\[
\sum \delta(t - nT) \times p(t) \times h(t) + N(t) \cdot \Pi_{T_s}(t) \xrightarrow{\text{Sampler, rate } f_s} R[n] \rightarrow \text{DSP}
\]
Discrete-time Equivalent Impulse Response

To determine the impulse response $h[n]$ of the discrete-time equivalent system:

- Set noise signal N_t to zero,
- set input signal b_n to unit impulse signal $\delta[n]$,
- output signal is impulse response $h[n]$.

Procedure yields:

$$h[n] = \frac{1}{T_s} \int_{nT_s}^{(n+1)T_s} p(t) * h(t) \, dt$$

For high sampling rates ($f_s T \gg 1$), the impulse response is closely approximated by sampling $p(t) * h(t)$:

$$h[n] \approx p(t) * h(t) \big|_{(n+\frac{1}{2})T_s}$$
Discrete-time Equivalent Impulse Response

Figure: Discrete-time Equivalent Impulse Response \((f_s T = 8)\)
Discrete-Time Equivalent Noise

To determine the properties of the additive noise $N[n]$ in the discrete-time equivalent system,

- Set input signal to zero,
- let continuous-time noise be complex, white, Gaussian with power spectral density N_0,
- output signal is discrete-time equivalent noise.

Procedure yields: The noise samples $N[n]$

- are independent, complex Gaussian random variables, with zero mean, and
- variance equal to N_0 / T_s.
Received Symbol Energy

- The last entity we will need from the continuous-time system is the received energy per symbol E_s.
 - Note that E_s is controlled by adjusting the gain A at the transmitter.
- To determine E_s,
 - Set noise $N(t)$ to zero,
 - Transmit a single symbol b_n,
 - Compute the energy of the received signal $R(t)$.
- Procedure yields:

$$E_s = \sigma_s^2 \cdot A^2 \int |p(t) * h(t)|^2 \, dt$$

- Here, σ_s^2 denotes the variance of the source. For BPSK, $\sigma_s^2 = 1$.
- For the system under consideration, $E_s = A^2 T$.

Simulating Transmission of Symbols

- We are now in position to simulate the transmission of a sequence of symbols.
 - The MATLAB functions previously introduced will be used for that purpose.
- We proceed in three steps:
 1. Establish parameters describing the system,
 - By parameterizing the simulation, other scenarios are easily accommodated.
 2. Simulate discrete-time equivalent system,
 3. Collect statistics from repeated simulation.
Listing : SimpleSetParameters.m

3 \% This script sets a structure named Parameters to be used by
\% the system simulator.

3 \%
3 \% Parameters
3 \% construct structure of parameters to be passed to system simulator
3 \% communications parameters
3 Parameters.T = 1/10000; \% symbol period
3 Parameters.fsT = 8; \% samples per symbol
3 Parameters.Es = 1; \% normalize received symbol energy to 1
3 Parameters.EsOverN0 = 6; \% Signal-to-noise ratio (Es/N0)
3 Parameters.Alphabet = [1 -1]; \% BPSK
3 Parameters.NSymbols = 1000; \% number of Symbols

3 \% discrete-time equivalent impulse response (raised cosine pulse)
3 fsT = Parameters.fsT;
3 tts = ((0:fsT-1) + 1/2)/fsT;
3 Parameters.hh = sqrt(2/3) * (1 - cos(2*pi*tts)*sin(pi/fsT)/(pi/fsT));
Simulating the Discrete-Time Equivalent System

- The actual system simulation is carried out in MATLAB function `MCSimple` which has the function signature below.
 - The parameters set in the controlling script are passed as inputs.
 - The body of the function simulates the transmission of the signal and subsequent demodulation.
 - The number of incorrect decisions is determined and returned.

```matlab
function [NumErrors, ResultsStruct] = MCSimple( ParametersStruct )
```
Simulating the Discrete-Time Equivalent System

The simulation of the discrete-time equivalent system uses toolbox functions `RandomSymbols`, `LinearModulation`, and `addNoise`.

```matlab
A = sqrt(Es/T); % transmitter gain
N0 = Es/EsOverN0; % noise PSD (complex noise)
NoiseVar = N0/T*fsT; % corresponding noise variance N0/Ts
Scale = A*hh*hh'; % gain through signal chain

% simulate discrete-time equivalent system
% transmitter and channel via toolbox functions
Symbols = RandomSymbols( NSymbols, Alphabet, Priors );
Signal = A * LinearModulation( Symbols, hh, fsT );
if ( isreal(Signal) )
    Signal = complex(Signal); % ensure Signal is complex-valued
end
Received = addNoise( Signal, NoiseVar );
```
Digital Matched Filter

- The vector Received contains the noisy output samples from the analog front-end.
- In a real system, these samples would be processed by digital hardware to recover the transmitted bits.
 - Such digital hardware may be an ASIC, FPGA, or DSP chip.
- The first function performed there is digital matched filtering.
 - This is a discrete-time implementation of the matched filter discussed before.
 - The matched filter is the best possible processor for enhancing the signal-to-noise ratio of the received signal.
In our simulator, the vector \textit{Received} is passed through a discrete-time matched filter and down-sampled to the symbol rate.

- The impulse response of the matched filter is the conjugate complex of the time-reversed, discrete-time channel response \(h[n] \).
MATLAB Code for Digital Matched Filter

- The signature line for the MATLAB function implementing the matched filter is:

```matlab
function MFOut = DMF( Received, Pulse, fsT )
```

- The body of the function is a direct implementation of the structure in the block diagram above.

```matlab
% convolve received signal with conjugate complex of
% time-reversed pulse (matched filter)
Temp = conv( Received, conj( fliplr(Pulse) ) );

% down sample, at the end of each pulse period
MFOut = Temp( length(Pulse) : fsT : end );
```
DMF Input and Output Signal

DMF Input

DMF Output
IQ-Scatter Plot of DMF Input and Output

- **DMF Input**
 - Real Part
 - Imag. Part

- **DMF Output**
 - Real Part
 - Imag. Part
The final operation to be performed by the receiver is deciding which symbol was transmitted. This function is performed by the slicer.

The operation of the slicer is best understood in terms of the IQ-scatter plot on the previous slide. The red circles in the plot indicate the noise-free signal locations for each of the possibly transmitted signals. For each output from the matched filter, the slicer determines the nearest noise-free signal location. The decision is made in favor of the symbol that corresponds to the noise-free signal nearest the matched filter output.

Some adjustments to the above procedure are needed when symbols are not equally likely.
MATLAB Function SimpleSlicer

The procedure above is implemented in a function with signature

```matlab
function [Decisions, MSE] = SimpleSlicer( MFOut, Alphabet, Scale )
```

```matlab
%% Loop over symbols to find symbol closest to MF output
for kk = 1:length( Alphabet )
    % noise-free signal location
    NoisefreeSig = Scale*Alphabet(kk);
    % Euclidean distance between each observation and constellation point
    Dist = abs( MFOut - NoisefreeSig );
    % find locations for which distance is smaller than previous best
    ChangedDec = ( Dist < MinDist );
    % store new min distances and update decisions
    MinDist( ChangedDec ) = Dist( ChangedDec );
    Decisions( ChangedDec ) = Alphabet(kk);
end
```
Entire System

- The addition of functions for the digital matched filter completes the simulator for the communication system.
- The functionality of the simulator is encapsulated in a function with signature

```matlab
function [NumErrors, ResultsStruct] = MCSimple( ParametersStruct )
```

- The function simulates the transmission of a sequence of symbols and determines how many symbol errors occurred.
- The operation of the simulator is controlled via the parameters passed in the input structure.
- The body of the function is shown on the next slide; it consists mainly of calls to functions in our toolbox.
Listing : MCSimple.m

```matlab
%% simulate discrete-time equivalent system
% transmitter and channel via toolbox functions
Symbols = RandomSymbols( NSymbols, Alphabet, Priors );
Signal = A * LinearModulation( Symbols, hh, fsT );
if ( isreal( Signal ) )
    Signal = complex( Signal ); % ensure Signal is complex-valued
end
Received = addNoise( Signal, NoiseVar );

%% digital matched filter and slicer
MFOut = DMF( Received, hh, fsT );
Decisions = SimpleSlicer( MFOut(1:NSymbols), Alphabet, Scale );

%% Count errors
NumErrors = sum( Decisions ~= Symbols );
```
Monte Carlo Simulation

- The system simulator will be the work horse of the Monte Carlo simulation.
- The objective of the Monte Carlo simulation is to estimate the symbol error rate our system can achieve.
- The idea behind a Monte Carlo simulation is simple:
 - Simulate the system repeatedly,
 - for each simulation count the number of transmitted symbols and symbol errors,
 - estimate the symbol error rate as the ratio of the total number of observed errors and the total number of transmitted bits.
The above suggests a relatively simple structure for a Monte Carlo simulator.

Inside a programming loop:

- perform a system simulation, and
- accumulate counts for the quantities of interest

```matlab
while (~Done)
    NumErrors(kk) = NumErrors(kk) + MCSimple(Parameters);
    NumSymbols(kk) = NumSymbols(kk) + Parameters.NSymbols;

    % compute Stop condition
    Done = NumErrors(kk) > MinErrors || NumSymbols(kk) > MaxSymbols;
end
```
Confidence Intervals

- **Question**: How many times should the loop be executed?
- **Answer**: It depends
 - on the desired level of accuracy (confidence), and
 - (most importantly) on the symbol error rate.

- **Confidence Intervals**:
 - Assume we form an estimate of the symbol error rate P_e as described above.
 - Then, the true error rate \hat{P}_e is (hopefully) close to our estimate.
 - Put differently, we would like to be reasonably sure that the absolute difference $|\hat{P}_e - P_e|$ is small.
Confidence Intervals

More specifically, we want a high probability \(p_c \) (e.g., \(p_c = 95\% \)) that \(|\hat{P}_e - P_e| < s_c \).

- The parameter \(s_c \) is called the confidence interval;
- it depends on the confidence level \(p_c \), the error probability \(P_e \), and the number of transmitted symbols \(N \).

It can be shown, that

\[
s_c = z_c \cdot \sqrt{\frac{P_e(1-P_e)}{N}},
\]

where \(z_c \) depends on the confidence level \(p_c \).

- Specifically: \(Q(z_c) = (1 - p_c) / 2 \).
- Example: for \(p_c = 95\% \), \(z_c = 1.96 \).

Question: How is the number of simulations determined from the above considerations?
Choosing the Number of Simulations

- For a Monte Carlo simulation, a stop criterion can be formulated from:
 - a desired confidence level \(p_c \) (and, thus, \(z_c \))
 - an acceptable confidence interval \(s_c \),
 - the error rate \(P_e \).

- Solving the equation for the confidence interval for \(N \), we obtain
 \[
 N = P_e \cdot (1 - P_e) \cdot \left(\frac{z_c}{s_c} \right)^2.
 \]

- A Monte Carlo simulation can be stopped after simulating \(N \) transmissions.
- **Example:** For \(p_c = 95\% \), \(P_e = 10^{-3} \), and \(s_c = 10^{-4} \), we find \(N \approx 400,000 \).
A Better Stop-Criterion

► When simulating communications systems, the error rate is often very small.
► Then, it is desirable to specify the confidence interval as a fraction of the error rate.
 ▶ The confidence interval has the form \(s_c = \alpha_c \cdot P_e \) (e.g., \(\alpha_c = 0.1 \) for a 10% acceptable estimation error).
 ▶ Inserting into the expression for \(N \) and rearranging terms,

\[
P_e \cdot N = (1 - P_e) \cdot \left(\frac{z_c}{\alpha_c} \right)^2 \approx \left(\frac{z_c}{\alpha_c} \right)^2.
\]

► Recognize that \(P_e \cdot N \) is the expected number of errors!
► **Interpretation:** Stop when the number of errors reaches \(\left(\frac{z_c}{\alpha_c} \right)^2 \).
► **Rule of thumb:** Simulate until 400 errors are found (\(p_c = 95\% \), \(\alpha = 10\% \)).
Listing: MCSimpleDriver.m

% comms parameters delegated to script SimpleSetParameters
SimpleSetParameters;

% simulation parameters
EsOverN0dB = 0:0.5:9; % vary SNR between 0 and 9dB
MaxSymbols = 1e6; % simulate at most 1000000 symbols

% desired confidence level an size of confidence interval
ConfLevel = 0.95;
ZValue = Qinv((1-ConfLevel)/2);
ConfIntSize = 0.1; % confidence interval size is 10% of estimate

% For the desired accuracy, we need to find this many errors.
MinErrors = (ZValue/ConfIntSize)^2;

Verbose = true; % control progress output

%% simulation loops
% initialize loop variables
NumErrors = zeros(size(EsOverN0dB));
NumSymbols = zeros(size(EsOverN0dB));
Listing : MCSimpleDriver.m

for kk = 1:length(EsOverN0dB)
 % set Es/N0 for this iteration
 Parameters.EsOverN0 = dB2lin(EsOverN0dB(kk));
 % reset stop condition for inner loop
 Done = false;

 % progress output
 if (Verbose)
 disp(sprintf('Es/N0:%0.3g dB', EsOverN0dB(kk)));
 end

 % inner loop iterates until enough errors have been found
 while (~Done)
 NumErrors(kk) = NumErrors(kk) + MCSimple(Parameters);
 NumSymbols(kk) = NumSymbols(kk) + Parameters.NSymbols;

 % compute Stop condition
 Done = NumErrors(kk) > MinErrors || NumSymbols(kk) > MaxSymbols;
end
Simulation Results

Symbol Error Rate

\[10^{-1} \]
\[10^{-2} \]
\[10^{-3} \]
\[10^{-4} \]
\[10^{-5} \]

\[E_s/N_0 \text{ (dB)} \]

\[-2 \quad 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \]

Monte Carlo Simulation
Summary

- Introduced discrete-time equivalent systems suitable for simulation in MATLAB.
 - Relationship between original, continuous-time system and discrete-time equivalent was established.
- Digital post-processing: digital matched filter and slicer.
- Monte Carlo simulation of a simple communication system was performed.
 - Close attention was paid to the accuracy of simulation results via confidence levels and intervals.
 - Derived simple rule of thumb for stop-criterion.
Where we are ...

- Laid out a structure for describing and analyzing communication systems in general and wireless systems in particular.
- Saw a lot of MATLAB examples for modeling diverse aspects of such systems.
- Conducted a simulation to estimate the error rate of a communication system and compared to theoretical results.
- To do: consider selected aspects of wireless communication systems in more detail, including:
 - modulation and bandwidth,
 - wireless channels,
 - advanced techniques for wireless communications.
Outline

MATLAB Simulation

Frequency Diversity: Wide-Band Signals
Frequency Diversity through Wide-Band Signals

- We have seen above that narrow-band systems do not have built-in diversity.
 - Narrow-band signals are susceptible to have the entire signal affected by a deep fade.
- In contrast, wide-band signals cover a bandwidth that is wider than the coherence bandwidth.
 - **Benefit:** Only portions of the transmitted signal will be affected by deep fades (frequency-selective fading).
 - **Disadvantage:** Short symbol duration induces ISI; receiver is more complex.
- The benefits, far outweigh the disadvantages and wide-band signaling is used in most modern wireless systems.
We illustrate that wide-band signals do provide diversity by means of a simple thought experiments.

Thought experiment:
- Recall that in discrete time a multi-path channel can be modeled by an FIR filter.
 - Assume filter operates at symbol rate T_s.
 - The delay spread determines the number of taps L.
- Our hypothetical system transmits one information symbol in every L-th symbol period and is silent in between.
- At the receiver, each transmission will produce L non-zero observations.
 - This is due to multi-path.
 - Observation from consecutive symbols don’t overlap (no ISI)
- Thus, for each symbol we have L independent observations, i.e., we have L-fold diversity.
Illustration: Built-in Diversity of Wide-band Signals

- We will demonstrate shortly that it is not necessary to leave gaps in the transmissions.
 - The point was merely to eliminate ISI.
- Two insights from the thought experiment:
 - Wide-band signals provide built-in diversity.
 - The receiver gets to look at multiple versions of the transmitted signal.
 - The order of diversity depends on the ratio of delay spread and symbol duration.
 - Equivalently, on the ratio of signal bandwidth and coherence bandwidth.
- We are looking for receivers that both exploit the built-in diversity and remove ISI.
 - Such receiver elements are called equalizers.
Equalization

- Equalization is obviously a very important and well researched problem.
- Equalizers can be broadly classified into three categories:
 1. **Linear Equalizers**: use an inverse filter to compensate for the variations in the frequency response.
 - Simple, but not very effective with deep fades.
 2. **Decision Feedback Equalizers**: attempt to reconstruct ISI from past symbol decisions.
 - Simple, but have potential for error propagation.
 3. **ML Sequence Estimation**: find the most likely sequence of symbols given the received signal.
 - Most powerful and robust, but computationally complex.
Maximum Likelihood Sequence Estimation

- Maximum Likelihood Sequence Estimation provides the most powerful equalizers.
- Unfortunately, the computational complexity grows exponentially with the ratio of delay spread and symbol duration.
 - I.e., with the number of taps in the discrete-time equivalent FIR channel.
Maximum Likelihood Sequence Estimation

- The principle behind MLSE is simple.
 - Given a received sequence of samples $R[n]$, e.g., matched filter outputs, and
 - a model for the output of the multi-path channel: $\hat{r}[n] = s[n] \ast h[n]$, where
 - $s[n]$ denotes the symbol sequence, and
 - $h[n]$ denotes the discrete-time channel impulse response, i.e., the channel taps.
 - Find the sequence of information symbol $s[n]$ that minimizes
 $$D^2 = \sum_{n}^{N} |r[n] - s[n] \ast h[n]|^2.$$
Maximum Likelihood Sequence Estimation

- The criterion

\[D^2 = \sum_{n=1}^{N} |r[n] - s[n] \ast h[n]|^2. \]

- performs diversity combining (via \(s[n] \ast h[n] \)), and
- removes ISI.

- The minimization of the above metric is difficult because it is a discrete optimization problem.
 - The symbols \(s[n] \) are from a discrete alphabet.

- A computationally efficient algorithm exists to solve the minimization problem:
 - The Viterbi Algorithm.
 - The toolbox contains an implementation of the Viterbi Algorithm in function `va`.
MATLAB Simulation

- A Monte Carlo simulation of a wide-band signal with an equalizer is conducted
 - to illustrate that diversity gains are possible, and
 - to measure the symbol error rate.
- As before, the Monte Carlo simulation is broken into
 - set simulation parameter (script `VASetParameters`),
 - simulation control (script `MCVADriver`), and
 - system simulation (function `MCVA`).
MATLAB Simulation: System Parameters

Listing: VASetParameters.m

Parameters.T = 1/1e6; \texttt{\% symbol period}
Parameters.fsT = 8; \texttt{\% samples per symbol}
Parameters.Es = 1; \texttt{\% normalize received symbol energy to 1}
Parameters.EsOverN0 = 6; \texttt{\% Signal-to-noise ratio (Es/N0)}
Parameters.Alphabet = \([1 \quad -1]\); \texttt{\% BPSK}
Parameters.NSymbols = 500; \texttt{\% number of Symbols per frame}

Parameters.TrainLoc = \texttt{floor}(Parameters.NSymbols/2); \texttt{\% location of t}
Parameters.TrainLength = 40;
Parameters.TrainingSeq = \texttt{RandomSymbols}(Parameters.TrainLength, ... Parameters.Alphabet, [0.5 0.5])

\texttt{\% channel}
Parameters.ChannelParams = \texttt{tux}(); \texttt{\% channel model}
Parameters.fd = 3; \texttt{\% Doppler}
Parameters.L = 6; \texttt{\% channel order}
The first step in the system simulation is the simulation of the transmitter functionality.

- This is identical to the narrow-band case, except that the baud rate is 1 MHz and 500 symbols are transmitted per frame.
- There are 40 training symbols.

Listing : MCVA.m

41 \% transmitter and channel via toolbox functions
InfoSymbols = RandomSymbols(NSymbols, Alphabet, Priors);
\% insert training sequence
Symbols = [InfoSymbols(1:TrainLoc) TrainingSeq ...
 InfoSymbols(TrainLoc+1:end)];
46 \% linear modulation
Signal = A * LinearModulation(Symbols, hh, fsT);
MATLAB Simulation

- The channel is simulated without spatial diversity.
 - To focus on the frequency diversity gained by wide-band signaling.
- The channel simulation invokes the time-varying multi-path simulator and the AWGN function.

```matlab
% time-varying multi-path channels and additive noise
Received = SimulateCOSTChannel( Signal, ChannelParams, fs);
Received = addNoise( Received, NoiseVar );
```
MATLAB Simulation

The receiver proceeds as follows:

- Digital matched filtering with the pulse shape; followed by down-sampling to 2 samples per symbol.
- Estimation of the coefficients of the FIR channel model.
- Equalization with the Viterbi algorithm; followed by removal of the training sequence.

```matlab
MFOut = DMF( Received, hh, fsT/2 );

% channel estimation
MFOutTraining = MFOut( 2*TrainLoc+1 : 2*(TrainLoc+TrainLength) );
ChannelEst = EstChannel( MFOutTraining, TrainingSeq, L, 2 );

% VA over MFOut using ChannelEst
Decisions = va( MFOut, ChannelEst, Alphabet, 2 );

% strip training sequence and possible extra symbols
Decisions( TrainLoc+1 : TrainLoc+TrainLength ) = [ ];
```
Channel Estimation

Channel Estimate:

\[\hat{h} = (S'S)^{-1} \cdot S'r, \]

where

- \(S \) is a Toeplitz matrix constructed from the training sequence, and
- \(r \) is the corresponding received signal.

```matlab
TrainingSPS = zeros(1, length(Received));
TrainingSPS(1:SpS:end) = Training;
TrainMatrix = toeplitz( TrainingSPS, [Training(1) zeros(1, Order-1)]);
ChannelEst = Received * conj( TrainMatrix) * ... inv(TrainMatrix’ * TrainMatrix);
```
Simulated Symbol Error Rate with MLSE Equalizer

Figure: Symbol Error Rate with Viterbi Equalizer over Multi-path Fading Channel; Rayleigh channels with transmitter diversity shown for comparison. Baud rate 1MHz, Delay spread $\approx 2\mu s$.
Conclusions

- The simulation indicates that the wide-band system with equalizer achieves a diversity gain similar to a system with transmitter diversity of order 2.
 - The ratio of delay spread to symbol rate is 2.
 - Comparison to systems with transmitter diversity is appropriate as the total average power in the channel taps is normalized to 1.
 - Performance at very low SNR suffers, probably, from inaccurate estimates.
- Higher gains can be achieved by increasing bandwidth.
 - This incurs more complexity in the equalizer, and
 - Potential problems due to a larger number of channel coefficients to be estimated.
- Alternatively, this technique can be combined with additional diversity techniques (e.g., spatial diversity).
More Ways to Create Diversity

- A quick look at three additional ways to create and exploit diversity.
 1. Time diversity.
 2. Frequency Diversity through OFDM.
 3. Multi-antenna systems (MIMO)
Time Diversity

- **Time diversity**: is created by sending information multiple times in different frames.
 - This is often done through *coding* and *interleaving*.
 - This technique relies on the channel to change sufficiently between transmissions.
 - The channel’s coherence time should be much smaller than the time between transmissions.
 - If this condition cannot be met (e.g., for slow-moving mobiles), *frequency hopping* can be used to ensure that the channel changes sufficiently.
 - The diversity gain is (at most) equal to the number of time-slots used for repeating information.
 - Time diversity can be easily combined with frequency diversity as discussed above.
 - The combined diversity gain is the product of the individual diversity gains.
OFDM

- OFDM has received a lot of interest recently.
- OFDM can elegantly combine the benefits of narrow-band signals and wide-band signals.
 - Like for narrow-band signaling, an equalizer is not required; merely the gain for each subcarrier is needed.
 - Very low-complexity receivers.
 - OFDM signals are inherently wide-band; frequency diversity is easily achieved by repeating information (really coding and interleaving) on widely separated subcarriers.
 - Bandwidth is not limited by complexity of equalizer;
 - High signal bandwidth to coherence bandwidth is possible; high diversity.
MIMO

▶ We have already seen that multiple antennas at the receiver can provide both diversity and array gain.
 ▶ The diversity gain ensures that the likelihood that there is no good channel from transmitter to receiver is small.
 ▶ The array gain exploits the benefits from observing the transmitted energy multiple times.
▶ If the system is equipped with multiple transmitter antennas, then the number of channels equals the product of the number of antennas.
 ▶ Very high diversity.
▶ Recently, it has been found that multiple streams can be transmitted in parallel to achieve high data rates.
 ▶ Multiplexing gain
▶ The combination of multi-antenna techniques and OFDM appears particularly promising.
Summary

- A close look at the detrimental effect of typical wireless channels.
 - Narrow-band signals without diversity suffer poor performance (Rayleigh fading).
 - Simulated narrow-band system.
- To remedy this problem, diversity is required.
 - Analyzed systems with antenna diversity at the receiver.
 - Verified analysis through simulation.
- Frequency diversity and equalization.
 - Introduced MLSE and the Viterbi algorithm for equalizing wide-band signals in multi-path channels.
 - Simulated system and verified diversity.
- A brief look at other diversity techniques.